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,Longitudinal flow past a thin body of revolution, part of whose 

surface is not known a priori and is to be determined from the tangen- 
tial velocity specified there (free-flow boundary), is considered. 
The flow is assumed to be vortex-free, and the fluid to be ideal and 
incompressible. An integral equation for the form of the free surface 
is derived and is solved by the method of successive approximations. 
Conditions for the existence and uniqueness of the solution are given. 
a constant velocity flow along the free boundary (cavitation flow) is 
considered as a particular example of the general theory. 

w 1. S ta t emont  of the  p r o b l e m .  Le t  a s t r e a m  with the  
v e l o c i t y  Uooat inf in i ty  flow p a s t  an a x i s y m m e t r i c  body.  
We a s s u m e  the fo rm of the  body s u r f a c e  to be s p e c i -  
f ied  at  the  l ead ing  and t r a i l i n g  edges  only,  whi le  that  
of i t s  i n t e r m e d i a t e  p a r t  i s  unknown--here  the t a n g e n -  
t i a l - v e l o c i t y  d i s t r i b u t i o n  i s  a s s i g n e d  (Fig .  1). 

The p r o b l e m  r e d u c e s  to f inding the po ten t ia l  ~0 of 
the  flow p a s t  the body of r evo lu t ion  def ined above .  

We in t roduce  the fol lowing notat ion:  the known p a r t s  
of the body s u r f a c e  a r e  ca l l ed  "f ixed b o u n d a r i e s "  ( seg-  
m e n t s  AB and CD in F ig .  1), and t h e i r  equat ions  a r e  
e x p r e s s e d  by  :6K41 O = r + (z) ; the unknown p a r t  of the 
s u r f a c e  i s  r e f e r r e d  to a s  the  " f ree  bounda ry"  ( s eg -  
men t  BC) with i t s  unknown equat ion wr i t t en  as  O = 
= r (z ) .  Thus the c o m p l e t e  s t r e a m l i n e d  s u r f a c e  p = 
= R (z) wil l  be def ined p i e c e w i s e  by  

R ( z ) = r _ ( z )  (a<z<b),  R ( z ) = r ( z )  (b<z<c),  
R(z)=r+(z) ,  (c<z  <d ) .  (1.1) 

In the fol lowing a l l  p a r a m e t e r s  r e l a t e d  to s ec t i ons  
(a, b) and (c, d) wil l  be  denoted,  a s  in (1.1),  by minus  
and p lus  s u b s c r i p t s .  

The p r o b l e m  s ta ted  r e d u c e s  to so lu t ion  of the equa -  
t ion 

%, -k %0 q- P-*% = 0 

fo r  the e x t e r n a l  s u r f a c e  p = R (z) with the  boundary  
va lue s  

O~/On = 0  f o r p = R ( z ) ,  

q~z "---~u,x, z a s  p --+-oo 

and t h e p r o v i s o  that  the funct ion R(z) is  unknown 
along sec t ion  (b, c), where  the t angen t i a l  v e l o c i t y  
dq~/dr = V r ( Z )  i s  spec i f i ed .  

w Condi t ions  of the  p r o b l e m .  We a s s u m e  the body 
to be thin hence:  

1) the funct ions  R(z) and R'(z)  a r e  cont inuous,  and 
n(a)  =R(d)  =0 

2) the function R 2(z) is analytic in the neighborhood 

of critical points a and d 

3) the function R "(z) is pieeewise-eontinuous. 

For simp!icity we assume that discontinuities are 

allowable only at points b and c (the points of contact 

of the "fixed" and the "free" boundaries) 

4) all along [a; d] the following thinness conditions 

are fulfilled 

~ 2  / (d - -  a)  ~ < e, ! (R2)('~') I / (d  - -  a)  s-~ . <  e 

( k = l ,  2, 3). 

Condi t ion (2) m e a n s  that  in the  ne ighborhood  of 
c r i t i c a l  po in ts  an expans ion  of the  fo rm 

.tv~ 2 (Z) = Z n (a  0 -F  a l z  -1- . . . )  

is valid. 

At a critical point the streamlined surface behaves 

for n=las a sphere, for n =2as a cone, and forn >_ 

>_ 3 as a knife-edge. 

Condition (4) depends on the dimensions of the body. 

For a finite length d - a = I can be assumed, and these 

inequalities are then written thus: 

R 2 ~ e ,  [(R2) ~  (~=1,2 ,3) .  (2.1) 

The t h innes s  condi t ions  fo r  inf in i te  c a v e r n s  a r e  
w r i t t e n  in the fo rm 

I (R2)"I < e, i (R~)"i < C < oo. (2.2) 

Particular attention will be given in this article 

to a body of finite length, so that a = 0 and d = 1 can 

be assumed. 

The velocity V r at the free boundary must fulfill 

the relation 

-~ e~ In e I ( 2 . 3 )  
t U r 1 6 2  ' " 
I 

Let  us a s s u m e  that  R,2 < e. Then f rom the equat ion 

V.. = 1/t § R ~2 Oq~/Oz. 

i t  fo l lows tha t  d ~ / d z  = V r can be a s s u m e d  for  s m a l l  
e, and,  consequent ly ,  the  va lue  of the poten t ia l  

~ = % + 1 v~ (z) d~. (2.4) 
b 

B 
c 

Fig. 1 

along the free boundary is known. 

Here go0 is a certain constant. Specification of the 

velocity on the surface of a thin body of revolution is 

thus tantamount to our defining the flow potential 
there. It was shown in [i] that for small ~ the poten- 
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t ia l  of longi tudinal  flow pas t  a thin body is  given the 
fo rmu la  

1 
t z - - ~  1 

[(~ - ~)~ + p~]~/~ 
o 

P(~) = Re(~)[I--T(~)I, (2.6) 
2 

i? (z, p) = 2 ~ p} ~ - ~i 
i=l [(z -- c~)~ § p~]~/~ ' 

2 8 

~ ' ( ~ ) = ~  c ": :  ~ ~/~' 

P(~)=p_(~)  (0<~<b) ,  P ( ~ ) = p ( ~ )  (b<~<c),  

P(~) = p + ( ~ ) ( c < ~ < i ) .  (2.7) 

H e r e  c~ = p t ,  e2 = 1 - pz, a n d  p~ a n d  pz a r e  t h e  

r a t i i  of body cu rva tu r e  at  c r i t i ca l  points .  
It follows f rom fo rmula  (2.5) that  the flow p o t e n -  

t i a l  can be r ead i ly  exp re s sed  in t e r m s  of the equa-  
t ion for  the s t r e a m l i n e d  sur face  R(z). Consequent ly ,  
for  solut ion of this p r o b l e m  it is suff ic ient  to find the 
equat ion for the free su r face  R(z). Since R(z) ap -  
pea r s  in (2.5) in t e r m s  of P(z) defined by (2.6), the 
p r o b l e m  e s sen t i a l l y  reduces  to our  f inding the func-  
t ion P.  

We note that  outside of the neighborhood of c r i t i ca l  
points  the funct ion ~/(z) is  on the o rde r  of e a, hence 
a lmos t  eve rywhere  P{z) ~ R2(z). 

w Rela t ion  to bounda ry -va lue  p r o b l e m s .  The v o r -  
t e x - f r e e  flow of an ideal  i n c o m p r e s s i b l e  fluid pas t  a 
solid with the sur face  S r educes  to the Neumann p r o b -  
l e m - t h e  der iva t ion  of a solut ion of the Laplace  e q u a -  
t ion A ~v A ~ = 0 with boundary  condit ion d ~ / d n  s = 0. 
Here  the sur face  S is  a s s u m e d  to be given.  

In our  p r o b l e m  par t  of the sur face  is  unknown, but 
the Di r ich le t  condit ion (2.4) is  specif ied the re .  Hence,  
we have to solve the Neumann p rob l em in  which pa r t  
of the boundary  is  unknown and is  d e t e r m i n e d  on the 
ba s i s  of the Di r ich le t  condit ion.  The so lvabi l i ty  of 
this  p rob l em will  be deal t  with l a t e r .  

w The fundamenta l  i n t eg ra l  equat ion.  Let  us  c o n -  

s ide r  Eq. (2.5) for  z ~ {b,c) and p = r ( z ) .  By sub -  
s t i tu t ing exp re s s ion  (2.4) for  the potent ia l  on the left 
we can obtain the re la t ionsh ip  

1 

fP(~)K~(~,  z, r ) d ~ - - S ( z )  = 0, (4.1)/ 
o 

I{~ (~, z, r) = z -- ~ b -- ~ (4.2) 
[ ( z  - -  ~)~ -J- r ~ ( z ) ]  % [ ( b  - -  ~)~" + r ~ (b ) ]  V~ ' 

(4.3) 
b 

AF (z, r) : F (z, r (z)) - -  F (b, r (b)). (4.4) 

Thus the unknown function P(}) (~ ~ {b, c) is  a 
solut ion of the non l inea r  in tegra l  equation (4.1) w i t h  
cons tant  l i m i t s  of in tegra t ion .  This  r e la t ionsh ip  can 
be r ewr i t t en  in the fo rm 

1 

f P' (~)K(~, z, z)d~ -4-3(z) : 0 
o 

K(~, z, r) = ]/'({--z)~-i-r~(z) ]/(~--b)~-t-r'(b) (4.5) 

Rela t ionship  (4.5) is  the fundamenta l  equation for 
this  p rob lem.  When r e w r i t t e n  in the form 

c 

lp '  (~) g (~, z, r)d~ = 
b 

b 1 

= - - S ( z ) - - f p ' _ ( ~ ) K ( ~ ,  z, r) d~ f p. ' (~)K(~,  z, r)d~ 
0 C 

with the non l inea r i ty  of kerne l  K neglected and i ts  
r igh t -hand  side cons ide red  as  known, i t  r educes  to a 
F redho lm in tegra l  equation of the f i r s t  kind with r e -  
spect  to funct ion p '  (D. 

w Solution of the in teg ra l  equat ion.  Let us a s s u m e  

= l / I In r" (b) I" ( 5 . i )  

With the equal i ty  

A 

- - A  

dx 
]/-z~-r + r ~ 

. _ _ - -  l n r  ~ - l n ( A  ~ - ~ *  

it  can be proved that 

1 

~r fP ' (~)K(~,  z, r)d~---~P'(z)-- P'(b) (5.2) 
o 

as e ---+ 0. 

On the ba s i s  of this  re la t ionsh ip  we wri te  the fun-  
damenta l  equation (4.5) in  the form 

T [P] = n [P] -~ T [P] = 0, (5.3) 

n [P]  = P ' ( z ) - - P ' ( b ) + ~ S ( z ) ,  
1 

[P] = ~ IP'  (~)K(~, z, r )d~--  [P' ( z ) ~  P'(b)], T 
o 

Here ~[P] is  the m a i n  pa r t  of opera to r  T, while 
T[P] is  i t s  " supp lementa ry"  opera to r  which abso rbs  
the bas ic  complexi ty  of the opera to r  under  c o n s i d e r -  
a t ion and in  accordance  with (5.2) T[P] - -  0 as e --* 0. 

To solve Eq. (5.3) we use  a modified Newton-Kan-  
torovieh  method for solut ion of the functional  equa-  
t ions  [2] 

Pn+l = P n - -  [~' [Pdl  -i [~ [P~]]. 

Here ~'[ P1 ] is  the F reche t  der iva t ive  of the opera to r  
~; [~'[Pt]] -1 is  the i n v e r s e  opera t ion for  ~ ' ;  Pl  is  the 
solut ion of the equation ~[Pl] = 0. 

In this  case  (the f i r s t  approximation)  

z 

p i ( z ) =  p(b)_4_P,(b)(z__b)__cclS(z)dz  ' (5.5) 

z 

[~' [Pl]] -1 [V] = f~dz .  (5.6) 
b 

Thus the method of succes s ive  approx imat ions  for  

solving Eq. (4.5) is 
z 1 

Pn+l:  Pn:'--Cr iI~Pn'(~)K(~, z, rn)d~ "~-S(z)}dz, (5.7) 
~ tg 

and funct ion (5.5) can be taken as the f i r s t  approx i -  
mat ion .  

We note that  the funct ion Pn(~) is defined by 

P=(~) = p_(~) (0<~<b) ,  P=(~) ---- P~(~) (b<~<c),  
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P..(~) = P . ( ~ ) I ( ~ < ; <  ~, 

w h i c h  f o l l o w s  f r o m  e x p r e s s i o n  ( 1 . 1 ) .  

w 6. Lxistenee and uniqueness of the solation of the equation, The 
first two Freehet derivatives of the operator TiP] are 

c 

[P] = c~6p ' (~ )K(~ ,  z, r ) d ~ - - S p ' - -  T" 
b 

t ~, P" (0  
-- -i- ~6p ~ d~ (~.i) 

o [(~ - -  ~)~ + r~]~/' ' 
c 

@' (0 
T" [P] ~ - -  a6p "[(~ _ z) ~ 4- r~] "/:-d~ + 

1 
3 ,~ ~. o, (~) .~ 

+ T ~ (@) ! [(; _ ~-~; + ~,l./,"~" (6.2) 

[ T [ P ~ I [ < I I ~ [ { I P {  1 l n ~  §  

/ T ' [ P , 1 I < ~ I n ~ {  In btr@- 4-4Ao~- m a x [ P { ' ' }  

< l ~ 3 maxiP{l~ 
I T" [Pz] ] ] l n e [ (  rz ~ + ";Z" rla j "  

To prove this l emma it is necessary to use the expressions for TiP] 
from (5.3), (6.1), and (6.2). 

For simplicity we assume here that 5p = 5r ~ and that the incre-  
ments of funetionals for both differentiations are equal. 

Lemma 1. Let rS(b) = g s  (0 < g < 1) and 15P" I < A0 �9 Then for 

1501 = I@'l  = t the following expressions for TiP] from (5.3), (6.1), 

and (6.2). 
Corollary 1, For the estimates of funetionats to be bounded it is 

sufficient to set 

ra ~ (z) > me > 0- (6.3) 

Corollary 2. Let the functinn r~(z)(as well as Pz(z))satisfy con- 
ditions (2.1) for a thin body. The estimates of operators are then writ- 
ten in the form 

e C t Co,, 

C~ = max In Ix~ 4- 4,4o 4- -~- m 

It remains to determine the conditions in which 71 (z) in (5.5) sat- 
isfies the l imitations for a thin body. 

Lemma 2 . / I f  the function P1(z) is to satisfy the conditions for a 
thin body, it is sufficient to require the determination ofveIoci ty  V r by 
inequality (2.3) along the free boundary. 

Proof. The condition I(R~)"t < e for a thin body is in this case of  
the form 

4 1 ~  V " - - u ~ 1 4 -  d--~-r (z, r) < e  
I In r ~ (b) I uco I 

( - ~ z r ( z , r )  = O(eD). 

This proves the l emma.  
Let us consider the class of differenfiable functions with bounded 

second derviatives. We introduce a norm of the form IIP~ = 
= max (]pl + IP'I) which the following est imate of the functional 
[~r t[Pl]]'r[F] in (5.7) is valid 

[1 [g' [Pl l I - I[F]  [I < 2 max IF[. (6.5) 

On these assumptions the basic result is valid. 
Theorem. Let the following conditions for the flow past an axisym- 

metr ic  body to be fulfilled : 
(a) length c - b of the freeboundarysatisfies the inequality c - b < 

< z 0 -- b, where z 0 is that root of equation Pr(z0) = 0 nearest to b, 

i (b) functions p _ (z) and p + (z) satisfy the limitations of a thin 

body (2.1), 

(e) at the free boundary velocity V-c is continuous and satisfies 
(2.3). 

The process (5.8) of successive approximations reduces for rather 
small  s to solution of Eq. (4.5), and this solution is unique. 

Proof. Condition (a) implies  the fulfi l lment of inequality (6.3), 
with rns = {Pl (z) [1 -- )~]}, hence the functionals of l emma 1 are 
bounded. Conditions (b) and (c) coincide with those oJ y l emma 2, 
hence estimates (6.47 ho!d for the functionals. 

To prove convergence we have to establish that the inequaI- 
ities [2] 

II [ *  [PAl -~ iT [P,]I {l -- n < V,., 

tl [z' [Pxl1-1 iT" [P1]] [] = M < 

FI in" ]Pall  -z iT" [Pt]]  t[ = V < t ,  

II [~' [Pd] -~ [~" [P~]] 1] = K <  

are satisfied, pravided that 

Tt(M-!- K) - t t - -  ] / ' { ~ ' ~  TI < e ,  
h=  g - - ~ g  < - ~ - '  h 1 - ~  

+ t f ~ - 2 h  n > e .  
h l - - p ,  

Yet according to relationship (6.5) the estimates of the first four 
functinnals are 

~1 < 2Cle / ! In e I, ~t < 2C s / Iln81, 

M < 2Cz / a lln el, K = 0 ,  

and, consequently, the comple te  system of inequalities can be 
satisfied for rather s m a l l e .  The theorem is proved. 

w Conditions of solvability of the problem stated. The re- 
quirement for R(z) and R'(z) to be continuous leads (in the context of 
thin-body theory to the following conditions at the contact  points of 
the boundaries: 

r (b) = r_ (b), r" (b) = r_ (b), 

r ( c ) = r +  (c), r + ' ( c ) = r ' ( c ) .  

The first two relationships concerning continuity at point b, have 
already been satisfied in construction of the function Pl(z) (5,5) and 
it remains only to fulfill the conditions of continuity at the point c 

p (c) = p+ (c), p '  (c) = p+' (c). (7.1) 

This means that restrictions are to be imposed on two numerical  
parameters of flow (free parameters) ,  if this problem is to be solva- 
ble. For example,  the case of cavitation flow (V r = const) the num-  
ber Q of cavitations and the cavern length c - b, etc. can be taken 
as such parameters.  

Should the conditions of the problem require continuity of R"(z) 
at the point b, the number of free parameters would be increased by 
one. We note that in this problem the Neumann condition is auto-  
mat ica l ly  fulfilled, since a~o/0n s = 0. 

w Solution of the problem stated. This section gives a summary 
of the results obtained. 

The free boundary equation r(z) is defined by the equality p(z) = 
= r 2 (1 - y(z)) in (2.6), where the function p(z) is found by the me-  
thod of successive approximations 

z 1 

b 0 

t 
--  I lnr -2(b)  l 

,~-~(0 [ t - - ~ ( 0 1  ( 0 < ~ < b )  
P n ( ~ ) = I r n Z ( ~ ) [ t - - T ( ~ )  ] ( b < ~ < e )  
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1 1 

z 

S ( z ) = - -  V _ d z - - u o o ( z - -  b) - - A V ( z ,  7"), 
Uco 

7(z) and A F(z , r )  are determined from formulas (2.7) and (4.4). 
Simultaneously with derivation of theform of the free boundary it 

is necessary to determine the free parameters from the condition 

p (c) = p+ (c), p' (0) = p+' (e). 

Should the conditions of the problem require continuity of R"(z), 
the number of free parameters would be correspondingly increased. 

Note. The quantity y(z) is actually different from zero only in the 
neighborhood of critical points, and away from them it is on the order 
of 6 s. For example,  for an ellipsoid of revolution with a ratio of axes 
of 1/3 we have RZ(z) < 1/36 we have y = O(10 TM) almost everywhere. 

w Cavitation flow. Let us consider, as an example,  the case of Vr 
= U 0 . The first approximation (5.5) (away from the critical points) is 
written in the form 

h0 
r2 (z) = p _  (b) + p~" (b) (z - -  b) - -  I In r ~ (b) I (z - -  b)2, 

(8.1) 

/,0=2( ~o _ , )  
I ~ U c o  , " 

It will be seen that the free line of flow has the form of an elon- 
gated ellipse with (h 0 / l l n  rt)t/t  as the ratio of its axes. This qualita- 
- t i r e  result can be verified directly, since on the surface of an ellip- 
soids = z c o n s t [ 8 ] ,  i . e . ,  ~o z const. 

When the point C recedes into infinity, the ellipse degenerates in-  
to a parabola 

r (z) = V p _  (o) -t- p_" (o ) (~  - b) . 

This result of the first aoproximation coincides with the asympto- 
tic law r(z) = O(zl/2(ln z) -t/~) cited in [4]. 

The quantity h 0 in (8.1) is readily expressed in terms of the number 
of cavitations 

h 0 = 2 ( 1 / 1 +  Q - - t ) ,  

For a small  number of cavitations h0= Q. 
If the cavitation flow is symmetric with respect to plane z = 

= const, (the Ryabushinskii flow) system (7.1) reduces to the 
single equation p'(c) = p+(c). 

Thus, in the case of Ryabushinskii cavitation flow a restriction must 
be imposed on one parameter of  the problem. For a given form of the 
fixed boundary this restriction can be considered as an implicit  depen- 
dence of length b - c of a theoretical cavern on the number Q of c a w  
itations. 
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