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‘Longitudinal flow past a thin body of revolution, part of whose

surface is not known a priori and is to be determined from the tangen-
tial velocity specified there (free-flow boundary), is considered.

The flow is assumed to be vortex-free, and the fluid to be ideal and
incompressible. An integral equation for the form of the free surface
is derived and is solved by the method of successive approximations.
Conditions for the existence and uniqueness of the sclution are given.
A constant velocity flow along the free boundary (cavitation flow) is
considered as a particular example of the general theory.

§1. Statement of the problem. Let a stream with the
velocity Uwat infinity flow past an axisymmetric body.
We assume the form of the body surface to be speci-
fied at the leading and trailing edges only, while that
of its intermediate part is unknown—here the tangen-
tial -velocity distribution is assigned (Fig. 1).

The problem reduces to finding the potential ¢ of
the flow past the body of revolution defined above.

We introduce the following notation: the known parts
of the body surface are called "fixed boundaries" (seg-
ments AB and CD in Fig. 1), and their equations are
expressed by 6K41 p = r + (z); the unknown part of the
surface is referred to as the "free boundary" (seg-
ment BC) with its unknown equation written as p =
=r(z). Thus the complete streamlined surface p =
= R(z) will be defined piecewise by

R(z)=r_(3) (a<z<b), R(z)=7r(2) p<:<e),
R(z)=r,(2), (c<z<d)., 1.1

In the following all parameters related to sections
{a,b) and (c, d) will be denoted, as in (1.1), by minus
and plus subscripts.

The problem stated reduces to solution of the equa-
tion

P2z + Poo + p_l(Pp =0

for the external surface‘ p = R(z) with the boundary
values
dp/ dn =0 for p=R (2),

QP >Uxp Z 88 O —00

and the proviso that the function R(z) is unknown
along section (b, ¢), where the tangential velocity
de/dr = V7(Z) is specified.

§2. Conditions of the problem. We assume the body
to be thin hence:

1) the functions R(z) and R'(z) are continuous, and
R@) =R@) =0

2) the function R2(z) is analytic in the neighborhood
of critical points a and d

3) the function R"(z) is piecewise-countinuous.

For simplicity we assume that discontinuities are
allowable only at points b and ¢ (the points of contact
of the "ixed" and the "free" boundaries).

4) all along {g, d] the following thinness conditions
are fulfilled

R2j(d—ap<le, [(RY]/(d—af"<e

(=1, 2, 3).

Condition (2) means that in the neighborhood of
critical points an expansion of the form

R (2) = 2" (ap + @1z + ...}

is valid.

At a critical point the streamlined surface behaves
for n =1 as a sphere, for n =2 as a cone, and forn =
> 3 as a knife-edge.

Condition (4) depends on the dimensions of the body.
For a finite length d — ¢ = 1 can be assumed, and these
inequalities are then written thus:

R2<e, |[(RYM|<e (k=1,23). (2.1)

The thinness conditions for infinite caverns are
written in the form
[(R7Y | e, (AR < C<oo. (2.2)
Particular attention will be given in this article
to a body of finite length, so that ¢ =0and d =1 can
be assumed.

The velocity V; at the free boundary must fulfill
the relation

lVT—u

=

x <-}£~£§Insl. (2.3)

Let us assume that R'2 < e. Then from the equation
Ve = V1 -+ R dgloz.
it follows that dep/dz = V.. can be assumed for small

e, and, consequently, the value of the potential

=+ gv,(z)dz. (2.4)
b

along the free boundary is known.

Here ¢ is a certain constant. Specification of the
velocity on the surface of a thin body of revolution is
thus tantamount to our defining the flow potential
there. K was shown in [1] that for small & the poten-
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tial of longitudinal flow past a thin body is given the

formula
1

_ 1 z—¢ 1
—ue e+ P —=f i1, )0
e {ZJ”‘:} O Tl P} . 5)

PR =RGUL—7OI (2.6)

2
I'(z,p)=2 p? :

i=1 [(z - ci)‘L + 92]1/2 ’

2
=3 e
1) iZ:'l {L—e+ RO

PE)=p_(L) 0<i<t)y, PE)=pE) G
PEy=p. (L) (c<t<). @.7)

Here ¢; = py, c3 =1 =~ p,, and p; and p, are the
ratii of body curvature at critical points.

It follows from formula (2.5) that the flow poten-
tial can be readily expressed in terms of the equa-
tion for the streamlined surface R(z). Consequently,
for solution of this problem it is sufficient to find the
equation for the free surface R(z). Since R(z) ap~
pears in (2.5) in terms of P(z) defined by (2.6), the
problem essentially reduces to our finding the func-
tion P,

We note that outside of the neighborhood of critical
points the function y(z) is on the order of &%, hence
almost everywhere P(z) ~ R:(z).

§3. Relation to boundary-value problems. The vor-
tex-free flow of an ideal incompressible fluid past a
solid with the surface S reduces to the Neumann prob-
lem—the derivation of a solution of the Laplace equa-
tion A p A =0 with boundary condition de/dn s =0.
Here the surface Sis assumed to be given.

In our problem part of the surface is unknown, but
the Dirichlet condition (2.4) is specified there. Hence,
we have to solve the Neumann problem in which part
of the boundary is unknown and is determined on the
basis of the Dirichlet condition. The solvability of
this problem will be dealt with later.

§4, The fundamental integral equation. Let us con-
sider Eq. (2.5) for z € (b,c) and p =r(z). By sub~
stituting expression (2.4) for the potential on the left
we can obtain the relationship

1

$P@ K (, 2, AL —5(2) =0, (4.1)
K = % _ b—¢ ., (4.2)
&N e T T s e
S(z) = 7?;[3 Vidz—un(z —b)| — AP, 1), (4.3)
b
AT (z, r) =TI (z, r (z)) = T'(b, r (b))- (4.4)

Thus the unknown function P(£) (£ € (b,c) is a
solution of the nonlinear integral equation (4.1) with.
constant limits of integration. This relationship can
be rewritten in the form

1

(P (@K (@E 2,08+ 5(z)=0

K 2 7) ! -

T Vi—mrrr@m  VE-tr+rr®

4.5)

50

Relationship (4.5) is the fundamental equation for
this problem. When rewritten in the form

[

\ @K@, 2, rdE=

b

b 1
=— 8@ —\P_ QK& zd—\ p/ @)K E 2 r)d

with the nonlinearity of kernel K neglected and its
right-hand side considered as known, it reduces to a
Fredholm integral equation of the first kind with re~
spect to function p' (9).

§5. Solution of the integral equation. Let us assume

a=1/[ln 2(b)]- (5.1)
With the equality
¢ dz
_SAW:——lan—l—ln(A LY By

it can be proved that

1

a\P Q) K (G, 2, r)dL— P’ (z)— P’ () (5.2)
as e—0.

On the basis of this relationship we write the fun-
damental equation (4.5) in the form

t[Pl=n[P]+T[P]=0,
n[P] = P’ (z)— P’ (b) + aS(z),

(5.8)

1
T (P] =a P @) K@, 2 r)dE— [P’ (2)— P'(B)]:
0
Here w[P] is the main part of operator 7, while
T[P] is its "supplementary" operator which absorbs
the basic complexity of the operator under consider-
ation and in accordance with (5.2) T[P] —0as & — 0.
To solve Eq. (5.3) we use a modified Newton-Kan-
torovich method for solution of the functional equa-
tions [2]

Pn+1: Pn— [ﬂ:’ [P1]]'1 [T [P'n]]

Here ©'[P,] isthe Frechetderivative of the operator
m; [n'[Py]] ! is the inverse operation for 7'; Py is the
golution of the equation n[P4] =0.

In this case (the first approximation)

z

Pi(z) = P(b) + P (b) (s — b)——oc§S(z)dz, (5.5)

z

[ (Pa1 [v] = vz,

b

(5.6}

Thus the method of successive approximations for
solving Eq. (4.5) is '

z 1

Pra=Po—a\{{PY @K & 2 rw)dl + s@)dz, 6.1

]

and function (5.5) can be taken as the first approxi-

mation.
We note that the function Pn(g) is defined by

P (3)=p () 0<z<b) Pu@) =PalB) B <E<0)



P8 =pHle<t< 1,

which follows from expression (1.1).
§ 6. Existence and uniqueness of the solution of the equation, The
first two Frechet derivatives of the operator T[P] are

[

TP = a\op QK (G, o r)dt—8p —

1 : P ()
—Tdﬁpo [(C— 2)? +- rz]‘/z a5, (6.1)
N3
7" [P]=— ab 3 -+
WPl == o0 =+ rrn
3 PP
+% 4 <6P)25 (¢ — z) 4_,-2]’/2 dg . (6.2)
pe

[P1”<—'l{ —|—4ma\lPl”‘},
!T'[Pdl<ll e +44 + mxl Al

" 1 3 maxlpll
T" [P —_ ol
] [ 1}I<|1 Bl{ 3 7‘14 JL.

To prove this lemma it is necessary to use the expressions for T[P]
from (5.3), (6.1), and (6.2).

For simplicity we assume here that 8p = ér? and that the incre-
ments of functionals for both differentiations are equal.

Lerama L. Let r3(b) = pe (0 < g < 1) and [8p"} < Ay . Then for
|sp] = |6p’] = 1 the following expressions for T[P] from (5.3), (6.1),
and (6.2).

Corollary 1, For the estimates of functionals to be bounded it is
sufficient to set

r?{z) > me > 0. (6.3)

Corollary 2. Let the function‘rf(z)(as well as P;(z)) satisfy con-
ditions (2.1) for'a thin body. The estimates of operators are then writ-
ten in the form

" 1
IT[P1”< [Cl, IT[P.XH<—I-IEC%
]T”{Pl][<8” 2T 01=max!1n_l:% 14, (6.4)
Co = max | In P2 ‘ i d, +_ ca= 4 .
1 m

It remains to determine the conditions in which Py (z) in (5.5) sat-
isfies the limitations for a thin body.
Lemma 2./ If the function Py (z) is to satisfy the conditions for a

thin body, it is sufficient to require the determination of velocity V. by

inequality (2.3) along the free boundary.
Proof. The condition I(RZ)"! < ¢ for a thin body is in this case of
the form

V_ —

't uOO d .
——~!+IEI‘(2, r)

uOO
(’_d‘él"(z, r)

This proves the lemma.

Let us consider the class of differentiable functions with bounded
second derviatives. We introduce a norm of the form [[Pf =
= max ([Pl + |P']) which the following estimate of the functional
(o 'tpyJ1 (F) in (5.7) is valid

I’ [PL1F) ] < 2 max |F|, (€.5)

1
41111’7'(’7)1

<&

= 0(83)).

On these assumptions the basic result is valid.

Theorem. Let the following conditions for the flow past an axisym-
metric body to be fulfilled:

(a) length ¢ - b of the free boundary satisfies the inequality c = b <
< zy — b, where z; is that root of equation Py(zy) = 0 nearest to b,

i (b) functions p _ (z) and p . (2) satisfy the limitations of a thin
body (2.1),

{c) at the free boundary velocity V; is continuous and satisfies
(2.3).

The process (5.8) of successive approximations reduces for rather
smallg to solution of Eq. (4.5), and this solution is unique.

Proof, Condition (a) implies the fulfillment of inequality (6.3),
with me ={P1 (z) [1 — y1}, hence the functionals of lemma 1 are
bounded. Conditions (b) and (¢} coincide with those of lemma 2,
hence estimates (6.4) hold for the functionals.

To prove convergence we have to establish that the inequal-
ities [2]

I [P [T [P == n <y
Ha [POVHT" [Pl = M < o0
Hn 121 T [Pl =p <Y,
[ {s" (2] [ [Pa]] ] = K < o0

are satisfied, provided thar

n{M+ K) 1—V1—2x n
=t < <
1+¥V1—-2r n >e.
TR 1w

Yet according to relationship (6.5) the estimates of the first four
functionals are

n<2Cie/lInel, u <20,/ |lng|,
M<2€;/¢ellng, K =10,

and, consequently, the complete system of inequalities can be
satisfied for rather smalle. The theorem is proved.

§17. Conditions of solvability of the problem stated. The re-
quirement for R(z) and R'(z) to be continuous leads (in the context of
thin-body theory to the following conditions at the contact points of
the boundaries:

@) =r_(b), 1) =r_(b),

r{ey =ry (&), r/{c)=r"{c)-.

The first two relationships concerning continuity at point b, have
already been satisfied in construction of the function Py(z) (5.5) and
it remains only to fulfill the conditions of continuity at the point ¢

p e} = py (o) (1.1)

This means that restrictions are to be imposed on two numerical
parameters of flow (free parameters), if this problem is to be solva~
ble. For example, the case of cavitation flow (V4 = const) the num-
ber Q of cavitations and the cavern length ¢ — b, etc. can be taken
as such parameters.

Should the conditions of the problem require continuity of R"(z)
at the point b, the number of free parameters would be increased by
one. We note that in this problem the Neumann condition is auto-
matically fulfilled, since 8¢/8ng =

§8. Solution of the problem stated, This section gives a summary
of the results obtained.

The free boundary equation r(z) is defined by the equality p(z) =
=12 (l - ¥(z)) in (2.8), where the function p(z) is found by the me~
thod of successive approximations

p(e) = p, (e)

z 1

Py (2 >~pn<>—¢\{ P QK (6 5 ra) 45 ()] d,

1
%= Mnr_2(6)]

PO —1 @] O<LCY)
Pn(C):{rnz(Q)Hn’r(C)] oL e
rEQOU =@ <<
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1 1
Fesn=yi=—re vioiro
S(z):—ulf—[;l V‘\dz——uoo(z—b)]—Al‘ (z, 1),

oo

¥

y(z) and A T'(z,r) are determined from formulas (2.7) and (4.4).
Simultaneously with derivation of the form of the free boundary it
is necessary to determine the free parameters from the condition

Pl =pie), P )=p.().

Should the conditions of the problem require continuity of R"(z),
the number of free parameters would be correspondingly increased.

Note. The quantity y(z) is actually different from zero only in the
neighborhood of critical points, and away from them it is on the order
ofg®. For examiple, for an ellipsoid of revolution with a ratio of axes
of 1/8 we have R¥(z) < 1/36 we have y = O(10™4) almost everywhere.

. §9. Cavitation flow. Let us consider, as an example, the case of Vr

= Uy. The first approximation (56.5) (away from the critical points) is
written in the form

h
P (3) = P (B) + B (0) (5 = b) — [re T (2 — b

/ao—_—z(;‘—o _1>'

Lo

8.1)

It will be seen that the free line of flow has the form of an elon-
gated ellipse with (B /|10 )1/ 45 the ratio of its axes. This qualita-
-tive result can be verified directly, since on the surface of an ellip-
soid ¢ = z const [3], i.e., ¢, const.

When the point C recedes into infinity, the ellipse degenerates in-
to a parabola

r(zy= Vp_(b) +p_(b)(z—b) -

52

This result of the first approximation coincides with the asympto-
tic law 1(z) = O(z¥%(In z)“ﬁl) cited in [4].

The quantity hyin (8.1) is readily expressed in terms of the number
of cavitations

iy = 2 (VT F 0 — 1),

Far a small number of cavitations hy = Q.

1f the cavitation flow is symmetric with respect to plane z =
= const, (the Ryabushinskii flow) system (7.1) reduces to the
single equation p'(c) = p'(c). '

Thus, in the case of Ryabushinskii cavitation flow a restriction must
be imposed on one parameter of the problem. For a given form of the
fixed boundary this reswriction can be considered as an implicit depen-
dence of length b ~ c of a theoretical cavern on the number Q of cav-
itations.
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